解:先做辅助线EI、FI、BI、CI。

    充分性:若BC=BE+CF,则可在😑🀨⚸边BC内取一点K,使BK=📺BE,从而CK=CF,连结🇦KI。

    在∠BAC的平分线AD上取△ABC的内心I,连结因BI平分∠ABC,CI平分ACB,故△BIK与🎽△BIE关于BI对称,△CIK与△CIF关于🏚CI对称.....

    故∠BE🗐🚰🗂I=∠BKI=π-∠CKI=π-∠CFI=∠AFI,从🗹☹而A、E、I、F四点共圆......

    结合B、E、F、C四点共圆......

    必要性:若△ABC的内心I是△DEF的外心,由于AE≠AF(事实上,由B、🏜🚺🏜🚺E、F、C四点共圆🞕🔀.....)故......

    因此BC=BK+CK=BE+CF。

    必要性证毕。

    .......

    十分钟的时间,第一👧道大题被徐川顺利斩杀。🚬🖚

    这道题的🗐🚰🗂难度并不是很大,关键点🞦🖕💠有两个,一个在于利用EI、FI、BI、CI这四条辅助线找到KI辅助线。

    另一个则是对π值的运用了。

    这是🁱🉧🉮高中几何解三角形和共圆用的比较少的一個点,不过只要掌握了这两点🁔🅢,📔那么解开第一题并不是什么问题。

    半个小时过去,难度较有提升的第二道整数求集合也斩落☯🂸马下。

    “今年的题,似乎并不怎么难的样子。”

    看着最后一道一道函数,徐川摸了摸下巴,扫了一眼考场,大部分的学生都在📔低头做题,这情况印证了他的想法。

    毕竟若🅮🉽是题目难度偏高,肯👻定有🁸学生抬头望天。